
//

i / ,/" .)

NUMERICAL ALGORITHMS FOR STEADY

AND UNSTEADY INCOMPRESSIBLE NAVIER-STOKES
EQUATIONS

I

Final Report
NASA Interchange No. NCA2-210

Mohammed Hafez

Jennifer Dacles

Dept. of Mechanical Engr.

University of California, Davis
Davis,Ca 95616

(NASA-CR-l_6039) NUMERICAL ALGORITHMS FUR

STEAOY ANO UNKIEAnY [NCOMPR_SSIgLE

NAVIER-ST_KC5 _QUAT!JNS Semiannual Status

Report, i May 19_7 - _0 Apro 19B9

(California Univ. 1 28 p CSCt OIA G3/02

Ng0-12499



Numerical Algorithms for Steady and Unsteady

Incompressible Navier-Stokes Equations
M. Hafez, J. Dacles

Dept. of Mechanical Engineering
U. C. Davis

Summary

The numerical analysis of the incompressible Navier-Stokes

equations are becoming important tools in the understanding of

some fluid flow problems which are encountered in research as well

as in industry. With the advent of the supercomputers, more realistic

problems can be studied with a wider choice of numerical algorithms.

This report presents an alternative formulation for viscous

incompressible flows The incompressible Navier-Stokes equations

are cast in a velocity/vorticity formulation (1). This formulation

consists of solving the Poisson equations for the velocity components

and the vorticity transport equation.

Two numerical algorithms for the steady two-dimensional

laminar flows are presented. The first method is based on the

actual partial differential equations. This uses a finite-difference

approximation of the governing equations on a staggered grid.
The second method uses a finite element discretization with the

vorticity transport equation approximated using a Galerkin

approximation and the Poisson equations are obtained using a least

squares method. The equations are solved efficiently using Newton's

method and a banded direct matrix solver (LINPACK).

The method is extended to steady three-dimensional laminar

flows and applied to a cubic driven cavity using finite difference

schemes and a staggered grid arrangement on a Cartesian mesh. The

equations are solved iteratively using a plane zebra relaxation
scheme.

Currently, a two-dimensional, unsteady algorithm is being

developed using a generalized coordinate system. The equations are

discretized using a finite-volume approach. This work will then be
extended to three-dimensional flows.



Algorithm Development

Background

Some of the widely used solution methods in the study of

viscous incompressible flows are the primitive variable formulation

for both 2-D and 3-D and the vorticity/stream function for 2-D and

plane flows. Under the class of the primitive variable formulations

are the artificial compressiblity method as developed by Kwak , et. al.

(2) and the fractional step method by Kim,and Moin (3). More

recently, Rosenfeld, et. al extended the fractional step method for

unsteady 3-D flow problems (4). One of the major concerns about

this formulation is the prescription of pressure on the boundary and

the method of obtaining the pressure. Mass conservation is an

important criterion that must also be satisfied. While the pressure

does not explicitly appear in the continuity equation it acts as an

important parameter in ensuring that continuity is satisfied.

Pressure can be eliminated from the equation by introducing the

vorticity/stream function formulation for 2-D This formulation

conserves mass automatically. This method can be extended to 3-D

using the vorticity/vector potential method. However, this extension

is not straightforward. Vorticity can be eliminated from this

equation to obtain a single biharmonic stream function formulation.

One of the issues of this formulation is that one may lose accuracy if

the formulation is not done correctly. Convergence with this method
is also slow.

The velocity/vorticity method is a combination of the primitive
variable formulation and the stream function formulation. This

method eliminates the problem with the pressure but introduces the

problem of the vorticity boundary conditions. Many different

techniques to overcome the problem of the vorticity boundary

conditions have been presented in the literature. They are grouped

into 3 different types of schemes. The first scheme uses the

relationship between velocity and stream function.(12,15).

The second class are those proposed by Quartapelle and Quartapelle

and Valz-Gris(16,17). These papers showed that in order for the

boundary conditions on the velocity be satisfied the vorticity should

evolve subject to an integral constraint. The third class of method

uses the vortex blob methods as introduced by Chorin. The present

treatment of vorticity boundary condition fall under the second class.



The boundary conditions on the velocity induce a constraint on the
vorticity. The equation for the definition of vorticity is then solved
as part of the flow.

The equations that are being used in this type of approach is of a
higher order than the original partial differential equations. Because
of this, less restrictive boundary conditions can be used. This may be
advantageous for those applications where restrictive boundary
conditions are problematic.
Another advantage of this method when used with a staggered mesh
arrangement is that it gives a compact and accurate representation of
the conservation of mass and vorticity. The natural decoupling of
the governing equations is also beneficial since this will lead to
simple treatment of the boundary conditions. This method seems
favorable for most 2-D flow applications. However, the extension to
3-D may present some drawbacks.
One of the major concern is the increased number of equations and
unknowns. You now have three equations for the velocity and three
vorticity components. This problem may be alleviated by not
solving the equations directly as was done in the 2-D case but rather
by using an efficient relaxation which will be competitive with the
other formulations. This problem will be addressed later on when
the 3-D unsteady formulation using a generalized coordinate system
is finished.



Governing Equations

The continuity equation, the definition of vorticity and the

vorticity transport equation are given by equations (1)-(3).

_-_--s, vx_--_

Ot

In equation (1), s represents a source distribution in the field. If s

0, then continuity equation cannot be automatically satisfied by

introducing a stream function for two dimensional and axisymmetric

flows. Moreover, the use of stream functions in multiply connected

domains requires special treatment of boundary conditions.

To solve equations (1)-(2), with prescribed normal velocity

components on the boundary, Rose (4,5) introduced a compact finite

difference scheme which leads to an ill-conditioned system of

equations. Osswald, Ghia and Ghia (6) used a direct solver for their

discrete velocity equations decoupled from the vorticity equation.

Recently Chang and Gunzburger(7) proposed a finite element

discretization of equations (1)-(2), which leads to a rectangular

algebraic system of equations.

The solution of equations (1),(2), with prescribed normal velocity

component on the boundary,exists only if some compatibility

relations hold. For example, using Gauss theorem one obtains

V V A

where n is the unit vector perpendicular to A.
shown that

Similarly, it can be

SIS dv-j'J'J"r,dv-j'J"
V v A

Also, the following vector identity must hold

v.vx_. v._- o

Fasel proposed to take the curl of equation (2)

It

vx_= vxCvx_)- vCv._)- v2_



Substituting equation (1) in equation (7) gives

-vz = - vs

Assuming w is known, the Poisson equations with Dirichlet

boundary conditions can be solved for the velocity components. In

general, equation (8) admits more solutions than those of equations

(1)-(2). For the case of "inviscid" flow, in a simply connected domain,

Fix and Rose (8) and Phillips (9) showed that the solution of

equations (1) and (2) with prescribed normal velocity components

can be obtained as a solution of equation (8). Besides the normal

velocity components, equation (2) is used as boundary conditions for

equation (8). With this choice, equation (8) has a unique solution,

and spurious solutions are excluded.

To extend the above analysis to the viscous flow case, the

prescribed velocity at the boundary is decomposed into two sets: the

normal and the tangential components. The normal component

together with the definition of the vorticity are imposed as boundary

conditions for equation (8). The tangential velocity components

provide boundary conditions for the vorticity transport equation. If

equation (8) and the vorticity transport equation are solved in a

coupled manner, there is no need to identify which boundary

condition is used for which equation.

A Least Squares Formulation

Consider the functional

 - III
V

2 2
+ dV



Minimizing I with respect to q yields

V

dV

. -r[[ _(_._-s)•_ +vx(_x_-:,)•,_dV
V

+[[(_._-_)_._÷(_x_-;)•(_x,_)dA
A

A more detailed analysis of this equation is shown in the Appendix.

Thus, the Euler-Lagrange equation associated with minimizing I is

identical to equation (8), provided the boundary terms vanish. The

latter condition is satisfied if i) the velocity vector q is specified at

the boundary; ii) the tangential velocity components are specified

and equation (1) is imposed at the boundary; or iii) the normal

velocity component is specified and the tangential components of

equation (2) are imposed at the boundary.

Assume the boundary conditions of iii) are used to determine the

velocity field. To solve the vorticity transport equations, three

boundary conditions are required; these are the two tangential

velocity components prescribed at the boundary as well as the

compatibility condition on the vorticity field .

It is noticed by Gunzberger and Patterson (10) that the latter is a

natural boundary condition associated with the Galerkin formulation

of the vorticity transport equation. Moreover, taking the divergence

of the vorticity equation, it is shown that _r.t_---o is governed by a

linear homogeneous equation and hence v.v7 vanishes everywhere.

To avoid the coupling between the velocity components at the

curved boundaries, the boundary condition i) may be used instead,

to determine the velocity field. The boundary conditions for the

vorticity transport equations are still
_x_ = vxqxn, and V-_ = 0

Special treatment may be required, however, to determine accurately

the tangential vorticity component at a curved boundary in terms of

the derivatives of the velocity components.



Numerical Techniques and Discretization

Finite Difference Discretization.

The terms are discretized using central difference schemes and

staggered grid formulation. This formulation defines vorticity to be

in the center of the grid while the velocity components are located

along the edges. The extension of this approach to 3-D schemes is

also applied. The method of solution is as follows: For the 2-D

formulation, the equations are solved fully coupled using Newton's

method of linearization and a direct solver package (LINPACK) An

outline of what subroutines are called and their roles are given in the

Appendix. For the 3-D formulation, the Poisson equations are solved

directly. The LU decomposition for the velocity components are only

done once and can be stored for later use. This will help with the cpu

requirement. The vorticity transport equations are solved using a

zebra line relaxation method for each of the 3 planes. The 2-D

staggered grid arrangement is show in Fig. 1 while the 3-D

arrangement is show in Fig. 2.

Finite Element Discretization.

A discrete approximation of the functional I can be easily

constructed using finite element techniques. Using standard bilinear

shape functions for the velocity components, the functional I can be

evaluated in terms of the nodal values. Upon minimization over

each element and assembling the contribution from all elements, the

nodal equations are readily obtained.

A Galerkin method due to Swartz and Wendroff (11) ( see also

Fletcher (12)) is used for the vorticity equation. The boundary

conditions are implemented as discussed before. There resulting

nonlinear system of algebraic equations are solved by Newtons
method and a direct solver.

For a simple geometry, a finite difference discretization over a

staggered grid leads to the five point stencil for the Poisson

equations. The stencil for the finite element method is shown in Fig.
1.



Finite Volume Discretization ( Generalized Coordinate System ).

When arbitrary geometries are considered the choice of the
discretization scheme is crucial. The discretized governing equations
and their compatibility relations must be satisfied as well a certain
geometrical identities when a generalized coordinate system is
employed. The finite-volume approach can give accurate
conservative approximations as was pointed out by Vinokur (13).
This method was also appled by Rosenfeld et al (14) using a
primitive variable formulation on a staggered mesh and a
generalized non-orthogonal system using the velocity/vorticity
formulation.

The choice of the dependent variables is also critical in obtaining
the accurate solutions. The scaled contravariant velocity
components in a staggered grid arrangement are used as the
dependent variables instead of the conventional Cartesian velocity
components. This choice is essential for mass conservation on the
discrete level.

The Integral Formulation of the Governing equations are:

JJ q .ndS = 0 ( mass conservation )

Jj n x q dS = J'JJ_dV (definition of vorticity)

jJ _n d5 = 0 ( conservationof vorticity)

[j(Vqn + n x _)d5=O

J/ (nq_-n_q -nW)dS=O



The geometric identity

ff ntis --C,

imposes the condition that the cell is closed. Another conditon that

must be also satisfied is that the sum of the cell volumes must equal
the total

volume of the flow region.

These conditions are automatically satisfied for the special case of

staggered Cartesian coordinates for a cubic driven cavity.

Numerical Results

The flow over a backward facing step is simulated using exactly

the same geometry as Ref. 2. The domain of integration is bounded

by solid surfaces at the top and the bottom of the backward facing

step. At the inlet station, a parabolic velocity profile is imposed

between the shoulder and the upper surface and it is assumed that

the flow is parallel( i.e. the upstream effect of the shoulder is

neglected). At the exit, the flow is assumed to be fully developed

(independent of x) ,and so v=0. The tangential velocity component

(u) is not known and the continuity equation is enforced at the exit

boundary. Fig. 3 shows the problem formulation for this case.

Fig. 4 shows the computing time for the Cray X-MP as compared to

the INS3D code and the fractional step method. The streamlines are

plotted in Figures 5-8 for the Reynolds number ranges of 133

through 1867.

Experimental resuts not only gave the expected primary zone of

recirculation region attached to the step but also showed additional

recirculation region downstream of the steps and on both sides of the

channel. Experiments have shown that transition to turbulence

happens at around RE=900. This means that the laminar and steady

flow assumption that was mentioned earlier is no longer valid.

However, much higher Reynolds number are analyzed to show that

the method is robust. Fig. 11 shows the convergence history for both



finite difference and finite element formulation. Quadratic
convergence is obtained independent of the grid size and Re provided
the initial guess is available. Comparison with other numerical
results and experimental data are also given. Mesh refinement is
also performed and it is seen that the finite element results are less
sensitive to the grid size.

Fig. 12 shows the convergence history for the 3-D driven cavity
problem.
The domain is bounded by solid surfaces everywhere with the top
wall moving at a uniform velocity of U=I in the positive x - direction.

Grid sizes of 9x9x9 up to 17x17x17 are used for Re=100. These
conditions are chosen to obtain direct comparison with the published
results. Figure 13 shows the distribution of the u-velocity
component along the centerline(z=0.5,y=0.5,x=0.5) as compared with
numerical results obtained by Dennis et. al.

Figure 14 shows the variation of the velocity component as a
function of y at z=0. and x=0.5 as compared with Dennis et al.

The vorticity contours compare well with Osswald et al for the
same grid size of 17x17x17. The contours for station
x=0.5,y=0.5,z=0.5 are shown in Fig 15 while the contours for station
x=0.71785,y=0.71785,z=0.71785 are show in Fig. 16.

The current work is on 2-D unsteady flow around a cylinder using
curvilinear coordinates.
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Discretizmtion

Finitedifference: -discretizeby centraldifference

-staggered grid

W
o

U
S

w=vorticity

u,v=vel comp

S : U x + Vy

FiniteElement • -discretizeusing bilinearshape
functions

-regulargrid

u4 u3

A

U l u2

ui (x,y) = aui + bui x + Cui y .,-dui xy



P,.roposed Method for 3-D

Velocit.y-Vorticity Formulation.

Governing equations (3-d)

(11) Uxx + Uyy +Uzz = (w2) z- (W3)y

(12) Vxx + Vyy + Vzz = (w3) x- (Wl)y

(13) Wxx + Wyy+ Wzz = (Wl)y- (w2) x

(14)

(15)

(16)

U(Wl) x +V(Wl)y+W(Wl)z-WlUx-W2Uy-W3Uz =

1__[ w 1 xx + Wl yy+Wl zz]
Re

u(W2)x +v(W2)y

1[ W2x x +W2yy
Re

+w(W2)z -w 1Vx-W2Vy-W3Vz

+W2zz]

u(W3)x +v(W3)y +w(W3)z-WlWx-W2Wy-W3Wz-

1[ W3x x +W3yy +W3zz]
Re

(17)

(18)
(19)

Wl= Wy-V z

w2= Uz-W x

w3-- Vx-Uy

3-D staggered grid arrangement:

y-dir

f
,_-dtr Fibre Z.

cell lJk

z-dir



Problem Formulation (2-D)

(8)

(9)
(lO)

V2u = - Wy

V2v = w x

(UW)x + (VW)y = 1 ( Wxx + Wyy )
Re

non-dimensionalized variables

x = x'/h , y = y'/h , u = u'/Umax , v = v'/Umax

w=w'/(Umax/h) , Re = (2/3)Umax(2h)

v

Umax = maximum inlet velocity

h = step height

L = channel length

v = kinematic viscosity

Test model (2-D backward facing step )

<U>--O, v=O

<u>=O , v=O

L

UlX =0

Wx=O

V =0

I

J
j,



(T:

COMPUTING TIME FOR BACKWARD FACING STEP

ON CRAY X-MP

tcpu seclgrldpoint/Iteration)

Re INS3D FRACTIONAL STEP PRESENT METHOD

IO0. 2.0xi0-6 1.5x/O-6

200. 2.0xi0-6 3.1xi0-6

300. 2.6x10-6 5.2x10-6

400. 6.7x10-6 8.2x 10-6

500. 1.0xi0-5 1.1xlO-5

600. 1.0x10-5 1.2x10-5

700. .97x10-5 1.3x10-5
800. 1.0x10-5 1.4x10-5

*cpu time rangeof
1.5x10-6 to3.0x10-6

forRe=I00 to 1800

INS3D and FractionalStep dataobtd.from S.Rogers,D.Kwak,J.Chang,
NumericalSolutionof Inc.o.mpressible.N$ I_qnsin3-O Ger_er_II

£urvilinearCoord.(NASA TM 86840 ).Jan 1986

Ficjure.q.



staggered grid formulation

I I t t I t I t .l.t__t_.l I I t I. I I .I.I .!..I 1 l..I !_.1 1 I I I L..i..I I_.I_ I t I_l !

STREAMLINE CONTOURS 105x31

Re=t33.

finite element formulation

t t I I t_,! .t.t t I t t I t l__l I___l_ I I t t t t t t I l t t I l__l__l__l__t t t l I I

STREAMLINE CONTOURS 105x31

F gurtS.



staggered grid formulation

........ ._-[, I | I !__I l,l_ !j.,J._! I I I I 1_1 I,,!.l._] .L_: [_I._L..I I I 1 I ! I._! I I

....... i_=i____: __:: :: :::!:.: :

0.0 10.0 20.0 30.0 40.0

STREAMLINE CONTOURS 1 05x3 1

Re= 600.

finite element formulation

0. 0 10.0 20.0 30.0

IIIIIII
40.0

STREAMLINE CONTOURS I 05x3 I

Fibre 6.



8tagg cred grt d f orrnul art on

S T I_ E A._I LI N E C 0 _: T 0 U R S I 0 5 x 3 I

Re= 1200.

finite element formulation

0.0 10.0 20.0 30.0 40.0

STREAMLINE CONTOURS 105x31

Figure7.



staggered grid formulation

0.0 10.0

STREAMLINE

20.0

CONTOURS

40.0

Re:1867.

finite element formulation

10.0

STREAMLINE

20.0

CONTOURS

40.0

Ft_e 6



FERI-fACFIIENTLOCATICI4 OF F91_I:P,YBUEBLE US. PIE

MESH FEF IrEIIB'IT

17.5-

RE

/
t

O exPeriment(Armaly,et.al)
/'-21x51
x 31x71

31xi05

finitedifference

X
R

15-

10-

. O experiment (Armaly,et.al)

A 21x51

x 31x71

0 3,_o5
finiteolement

RE

Ficj_eq



LOCAT!CIi (IF-cECCI'IDF6'YBUBB..EUS. RE

MESH FIEFItEME]4T

5_--

40-

3@-

2@-

10-

O experiment(Armaly.et.al)
A 31x 71
x 31xi05

[] 21x51

finitedifference . .,.,,,-_"-'/'-'-_

RE

5@---_

0 exI_eriment(Armaly.et.al)

4@-- "_-31x 71 -_

x 31xi05

[] 21x51 _.m

,J 7 ____-____'_
,o

_.._i-- .....

''' ' I '' '' I _ ' ' _ I ' ' ' ' I
(h __0 I@C0 1500 201_

RE

Figure.10,



m
,-I

<

e
14

M

I0''

tO-.e

|O--e

| O...e

10 *t

RE--IO00.O

OMXG

Y

U

\
_ \

I I I I I i I I I I

I m 8 4, 6 6 '7 8 D I0 II

ul

.¢
3
Q
,.e
M
M
ee

M

,110-I

I0.-o

10-4

10 "e

10"**

|O-*O

I 0"** --

1 O °'v

HE_IO00.O

OMEO

Y

_r

CONT

iillllilil

2 ! S 4 B 6 T a 0 10 11

ITERATIONH

Convergence history of

a finite element calculation

ITERATIONS

Convergence history of

a finite difference calculation

F; re1I.



ORIGINAL PAGE IS

OF POOR (_JJ%Ln'Y

! 0 3 --_-_

..J

I0

i

o

18 -_

2
R 13
E

- __D i0 4 =_

U -5 _
A io --_
L -0 _

iO

_0
it,

RE = i_0. 3-D DRIVEN CAVITY (17XITXITI GRID

_--\\.-.

_.m_.. -,. r1= u-vel
:- -'" _ r'2:v-veI

. ,'.\"'_\ rS=w-vel

rT= dlv(w )

_

-I

--I

\

r4= w l transl)ort eqn
r5= w2 transi_ort ecln
r_: w3 transport ecln

"-<_.

_._ /f-"--__

_11
q ,?"

__---_-_-_,' I _ _ : _ : ,-w--_--I,i

50 1.00 /50 "'00

NO OF .[TE.r_Aq''O,'.IF

.-5,_

r, %%
q

! ' -1

Figure I2. Convergence History



ORIGINAL PAGE IS

,3._

"rJ

0

1

8-1
A

!/
t

4-- +

't

2 ---4 ,,'c_
t

I

I
I
I

@ t
i

RE=Iu3_. URRIRTION OF U FIT Z=8.., X=_ .5

. =.:...-----

..._Zf

...._"

\

!

o Dennis et. ol.

_ present

O. " 9.4 0.6 3 :__

J

1

Figuret3
'.-'..'_'I 0C1T._j



OF POORQUALPrY

U

U

E

L

RE=IGG. URRIRTIOH OF U AT Z=_. , V= .g

5_

"3 3 m

0 I--

"M

! • j.-

i

I

o Oennls et. ol.

_ present
r-_v.";- -_-_

/fi :._'\
_.- _

i_" _.

/_/ ,._
i'i"

i.,'//

."i
., ./

/_+-"

,.y.
.L."

/
#

t"

d
((

I i ' I

_1 io
'1

\

|
I

._ii_,U'e.1.4 ,jli _.<:t l ,,ft



C
cl

¢.,I
GI
i,_

I

'_ _ _ --=_'-_-- -: _ --- _ __-_-,_ ...................... ...... _ _"--: __-_'/_ _Ji_"

• -,o:'I ;, " .... ----.__. .":I,, .'+
" " . '. . .i" ,'/It..-i

" : L "_''- ./f J' _ ', "'"

! j L,

, : X .---"

I /-

...I"

•2-" •5

" I
, t

_ -325 _ 50 _ 75

x-directlon (streamwise)

10

a)

0 7".
_,.

e-

05

I 0 25
N

00

:'7t " -....'""
i'_\_\_:,\t',,,,v.\."__-7',ilI

I JIl_, _-----------// _15;/_ \ __' :I
/ ' H_\ '\_-- .-'% . ¢ 7 \ J I

/ /:li\',',,"_ _-_" ,_,%// k._i _ t 1

00 025 050 075 I 0

x-dlrectlon(streamwlse)

ORIGINAL PA_E i3
OF POOR QUALITY

I u_i___ ,- .... _ - _'z'-_

_- --"--" .--/.J I "- "----._"--."_- I

.o_ t,,,:.",'l:'i".-:---,. -, .," .---_, ','x,\\_,,,,_!
° ':° //L, I.i. /,'1 '_' \

,_ !,.v/',,.....' ,: ,, "..__...,, '_\\_,
:ill , I_,'/ _ ,. "', ' _ '\ ,"

:s_,. , '\ .-. ..... .. . - ....... - / \ ' ',

z-dlrectlon(spanwlse)

_'_ 15 Contours of Normal Vortlclty Components at Midplanes



25

,. ./
I

i

I

T .....

_75 I

x-direction( streamwlsa )

05

025

00

oo

x-dlrectlon(streamwlse)

OI;IGINAL _.......
r'_,._i. • .

01: _ Q_ALtTY

z-dlrectlon( spanwlse )

_{_j_ _6. Contours of Normal Velocity Components at (x= 0.71875,

y=0.71875, z=0.71875 )


